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SUMMARY 

The nodal integral method is a relatively new numerical technique that has been used recently to solve both 
static and dynamic multidimensional problems in heat transfer, fluid flow and neutron transport. The 
method offers significant advantages in terms of stability, accuracy and efficiency over conventional finite 
elements when the problem can be adequately modelled in Cartesian co-ordinates. This method was used to 
investigate bifurcation phenomena in the Benard problem for aspect ratios in the range of one to nine. 
Automatic search techniques were used with a static version to find the first four critical Rayleigh values for a 
square cavity, to map the first two critical Rayleigh values as a function of aspect ratio, and to examine the 
solution types. Accuracy enhancement was obtained by factorization and extrapolation. Critical values, 
obtained by interpolation, were verified dynamically. Aspect ratio crossover and transition values were found 
for the first two critical Rayleigh numbers, with an accuracy of the order of + 3  per cent. The precision 
achieved in the results for Ra* and Ra** as a function of p is usually within 0.1 % 4 . 2 %  except at high p (i.e. 
near p=9.0) and at large critical values of Ra (i.e. the first few values of Ra** near p= 1). Specific results at 
p= 1.0 are Ra* = 2584 f0.5, Ra** = 6807, Ra3* = 19 734 and Ra4* = 22 586. 
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1. INTRODUCTION 

The BQard problem is the study of the motion of a fluid in a rectangular cavity that is uniformly 
heated from below. This problem is of practical and theoretical importance, with applications in 
such diverse disciplines as engineering, meteorology and astrophysics. Of special significance, the 
Benard problem provides a simple example of bifurcation in a fluid flow problem. 

Bifurcation in the Benard problem is characterized by the Rayleigh number (Ra), which is a 
dimensionless measure of the temperature difference across the cavity. When Ra is less than Ra*, 
its first critical value, there is no fluid flow in the cavity and heat is transferred by pure conduction. 
When Ra is greater than Ra*, the no-flow condition is an unstable solution and various convective 
cell patterns form stable solutions. As Ra is increased further, exceeding subsequent higher critical 
values of Ra (e.g. Ra**, Ra3* and Ra4*), additional unstable solutions are ~e rmi t t ed l -~ .  In 
general, the specific critical Rayleigh values and the specific types of solutions permitted are a 
function of: the aspect ratio (p), which is the ratio of length to height; the angle of cavity tilt (O),  as 
measured between the gravity vector and the negative y-axis; the Prandtl number (Pr); and Ra. 
These four non-dimensional parameters fully characterize flow in a closed cavity heated from 
below for a Boussinesq fluid.4 However, Pr appears to serve primarily to scale time in two- 
dimensional problems. 

The first reported studies of bifurcation in the Benard problem were analytical studies of the 
classical infinite horizontal cavity specified in two dimensions (i.e. p = a). The linear theory 

027 1-209 1/90/010035-12$06.OO 
0 1990 by John Wiley & Sons, Ltd. 

Received 20 September 1988 
Revised 6 February 1989 



36 G.  L. WILSON AND R. A. RYDIN 

employed in these early studies led to a critical Rayleigh value of Ra* = 1708 with an infinite 
number of convective cells (i.e. vortex r0lls).~9~ The introduction of sidewalls (i.e. /I< 00) more 
accurately models physical phenomena in practical engineering problems, but requires a non- 
linear approach owing to the resulting breakdown in the linear theory.’ Jackson and  winter^,^ as 
reported by Rae,’ used non-linear methods based on quadratic finite elements in an untilted 
square cavity (i.e. B= 1)  to calculate the first two critical Rayleigh values. Specifically, these 
investigators obtained Ra* = 2652 and Ra** = 7128 using a 9 x 9 grid, and Ra* =2612 and 
Ru** =6774 using a 17 x 17 grid. Estimates of the third and fourth critical Rayleigh values were 
also calculated on the basis of extremely coarse grids. Using modern coarse mesh methods, Azmy 
and Dorning4 calculated tbe first four critical Rayleigh numbers using a 6 x 6 mesh. The values 
reported were Ra* =2524, Ra** = 6807, Ra3* = 22 200 and Ra4* = 23 0oO. As noted by these 
investigators, the critical values introduce one-, two-, three- and four-vortex solutions respectively. 

The first examinations of the effects of tilt angle on bifurcation in the finite Benard problem were 
conducted by Cliffe and Winters’ and by Rae.’ These investigators mapped the first critical 
Rayleigh value as a function of tilt angle, thus revealing the ‘cusp catastrophe’ and the limits on the 
tilt angle for which bifurcation of the solution takes place. Azmy and Dorningg mapped more fully 
the unfolding of the first bifurcation point and the opening of the second bifurcation point for the 
square cavity. These investigators failed to resolve fully the unfolding of the second bifurcation 
point; however, additional work on this problem has been published by Riley and Winters1 

The first two critical Rayleigh values in the Benard problem, and to a much lesser extent the 
third and fourth critical values, have been examined by several authors as a function of aspect ratio 
greater than or equal to unity.’, 3 * 9  Azmy and Dorning also examined aspect ratios over the range 
/3 = 0.5-1.0,’ but these results demonstrated rather uninteresting monotonic behaviour because 
they did not cover low enough values of B (note that the definition of aspect ratio as employed by 
Azmy and Dorning is the inverse of the value defined here and as used by other investigators). All 
investigators used relatively coarse meshes and generally restricted themselves to aspect ratios less 
than approximately four. This restriction on the aspect ratio means that only the first three 
crossovers were mapped and asymptotic regions were missed. Azmy and Dorning used a 6 x 6 grid 
(or a 4 x 8 grid) to investigate as many as five vortices. This process results in significant error 
being introduced and is probably the primary reason why their critical Rayleigh values so quickly 
dropped below the analytic value of Ra* = 1708. 

The third and fourth critical Rayleigh numbers were examined in some detail by Azmy and 
Dorning,’ who also reported on a peanut-shaped vortex at f i=  1.8181. Wilson et al.,I1 using 
dynamic nodal integral methods, examined the dynamic stability of alternative solutions for B> 1 
and found that unstable initial solutions will reform into stable solutions for the given values of Ra 
and B; they also briefly examined the existence of two separate stable solutions at critical values of 
the aspect ratio (i.e. crossovers). 

This paper deals with the static and dynamic behaviour of convection in the BCnard problem for 
1 6 B 6 9 and 0 = 0. The results were extended to these higher values of p using a combination of the 
time-dependent nodal integral method (TDNIM)” and the static nodal integral method 
(SNIM).I3 The SNIM was derived from the TDNIM by forcing the face-average values at 
adjacent time steps to take on the node-integral-average value and then reducing the number of 
equations. Special attention was given to critical values of the aspect ratio and to the nature of 
solution changes at transitional values of the aspect ratio. All values for Ra* and Ra** were 
linearly corrected using a piecewise linear extrapolation process and continuity considerations 
based on extrapolated test values and test point calculations. In the region approaching B = 9, 
the Ra* and Ra** curves as a function of /3 indeed asymptotically approach the analytic value of 
Racrit = 1708. 
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Static nodal integral methods are very accurate and stable on a coarse mesh, while dynamic 
nodal integral methods are unconstrained by a Fourier or Courant conditions. Only the static 
method is capable of mapping allowed unstable solutions, because it will converge to such a 
solution when an approximate allowed solution is applied as an initial condition. Otherwise, the 
SNIM returns to a no-flow condition. The dynamic method, on the other hand, is used to test a 
solution to see how it undergoes transition to the stable state and also to generate various initial 
conditions. Had the objective of our study been solely to locate critical bifurcation values, then 
various automatic bifurcation search techniques'* would probably have been more cost-effective. 
However, our goal was not only to locate these points, but also to explore the nature of the 
solutions and solution transitions in the vicinity of these points. A comparison of the relative 
efficiency of our methods against finite elements has not been done for the present problem, but 
such a comparison has been done for a non-linear, two-dimensional heat conduction benchmark 
case.15 There the nodal integral method had a cost-accuracy efficiency advantage of about six 
times per spatial dimension and a clear superiority for time steps larger than the Fourier condition 
value. 

2. PROBLEM FORMULATION 

Many practical problems of interest in natural convection occur where the sole driving force for 
the flowfield is the bouyancy force arising from thermally induced density differences at different 
locations in the fluid. In such problems the flowfield is well approximated by the Boussinesq 
equations, where the fluid is treated as incompressible in all terms except the bouyancy terms of 
the momentum equations. In two-dimensional Cartesian geometry the dynamic formulation of 
the Boussinesq equations in dimensionless form may be written 

a U  a0 
-+p-=0 ax ay 

au au au a7, a2u Ra . -+ u-+pu-+---p---/?-sin(8) T=O, 
at ax ay ax a y 2  pr 

av av av a7 1 a2v Ra -+ u-+ pu-+ p ~ - - - -  p-cOs(e) T= 0, 
at ax ay ay  flax2 Pr 

aT aT aT 1 a2T a2T 
-+u-+pv--- --+fl2- =o, 
at ax ay  ppr( ax2 a,.) 

(3) 

(4) 

where p (aspect ratio) and 8 (tilt angle) are as defined previously, and u, u and T are the 
dimensionless x- and y-components of velocity and temperature respectively. Ra and Pr are the 
dimensionless Rayleigh number and Prandtl number, which are defined by 

R a = 8 g a A T H 3 p 2 C , f p k ,  (5)  

Pr = pCp f k, (6) 
where g,  a, p, C,, p and k are the acceleration due to gravity, the coefficient of thermal expansion, 
density, heat capacity, viscosity and thermal conductivity respectively; AT is the temperature 
difference between the hot and cold walls; and H is the half-height of the cavity. The normal 
stresses 7,  and 7,, are defined by 
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av 
y ay’ 

= p - -  

where p is the non-dimensional static pressure. These latter terms are introduced to accommodate 
decoupling of the transverse-averaged equations used to obtain the solution matrix for equations 
(1H4). In the Benard problem the bottom wall is heated and the top wall is cooled while both 
sidewalls are treated as insulated. No-slip boundary conditions are applied on all four walls. 

The non-linear equations for natural convection in a cavity were normally solved using the 
SNIM, while some solutions were also checked for stability with the TDNIM. Because the 
derivation of the TDNIM equations from the continuous-variable equations has been described 

only a brief sketch of the derivation is included here. 
The formalism for the TDNIM consists of five main steps, which proceed as follows. 

Divide the spatial system into M nodes or computational cells. 
Transverse-integrate the continuous-variable equations within each node over all but one of 
the independent variables to obtain two sets of four linear ordinary differential equations in 
space (one set each for the two spatial dimensions) and one set of three ordinary differential 
equations in time. 
Solve for the complete solution to the linear ordinary differential equations in terms of 
elementary solutions and particular integrals of the source terms. These terms can include 
distributed sources, transverse leakage, terms arising from the transverse-averaging process, 
and the non-linear advection terms. The source functions are approximated by their node- 
integral-average values. 
Derive the discrete-variable equations by imposing the continuity conditions on the 
primitive variables and their first spatial derivatives at node boundaries. 

(5) Evaluate the integral-average valuebf the source terms by requiring uniqueness of the node 
average of each of the primitive variables, and nodal balance of mass, momentum and 
thermal energy. 

The resulting set of algebraic equations is closed by consistently applying boundary conditions on 
the transverse-averaged variables that are derived from the physical boundary conditions. The 
final set of equations is quadratically non-linear and is solved using Newton-Raphson iterations. 
The resulting discrete-variable equations have the face-average values as unknowns-these are 
not the discrete-node values of finite element and finite difference methods. 

Velocity flowfield plots are made directly from the solution vectors of face-average velocities by 
plotting velocity vectors centred at the midpoint of the node face over which the continuous 
variable is averaged. This method has proven to be the most satisfactory even though functional 
fits can be made and internal values recovered. Note that the node-integral-average values are 
ignored in this plotting process. 

The SNIM was augmented by an automatic bifurcation search algorithm. As Figure 1 shows, in 
the untilted rigid rectangular cavity the velocity norm of a specific solution goes to zero for Ra less 
than a critical value. Therefore a search can be conducted by assuming a solution that brackets the 
critical Rayleigh value of interest and then halving the interval and testing the-converged solution 
at each step. In this process the velocity norm is tested. The norm used in the algorithm was the 
average absolute velocity over the cavity with a lo-’ test for flow versus no-flow. This process is 
probably not the most efficient way to search for bifurcation points, but it is made feasible when 
combined with a coarse mesh technique like the SNIM. Several other bifurcation search 
techniques based on finite elements have been examined by Cliffe and Winters.I4 
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Figure 1. Schematic representation of the opening of the first two pitchfork bifurcations in the untilted Benard problem 
for b= 1.0 and b= 1.7 

3. BIFURCATION AS A FUNCTION O F  ASPECT RATIO 

For the case p= 1, the first bifurcation value Ra* introduces single-vortex solutions in addition to 
the no-flow solution. The single-vortex solutions-the clockwise vortex and the anticlockwise 
vortex-are stable solutions, while the no-flow solution is unstable. The second bifurcation point 
Ra** introduces two-vortex solutions (p  = 1) that can exist in addition to the single-vortex 
solutions and the no-flow solution (see Figure 1). For p= 1, Ra** B Ra* and the two vortex 
solutions are unstable. As p is increased, the two-vortex solutions and the single-vortex solutions 
change roles. As depicted in Figure 1 for /I= 1.7, Ra** < Ra* and the two-vortex solutions are now 
the stable solutions, the single-vortex solutions being unstable. 

The first two critical Rayleigh numbers have been studied by other  investigator^.^.^*^ However, 
no one carried the process beyond the first few crossovers (to approximately /I=4.0), and all 
results to date suffer from lack of accuracy. 

Examinations of Ra* using extrapolation methods of order h", where n r 2  or more, have 
verified that nodal integral methods tend to underestimate the true value of Ra* in the region of 
interest. For p= 1, a best extrapolated value of Razest=2584f0.5 was ~b ta ined . '~  In contrast, 
Azmy and Dorning obtained Ra* = 2524.9 Further testing verified that nodal integral methods 
also lose accuracy with increasing /I. Therefore, to retain high accuracy, mesh refinements are 
required as additional vortices are added to the permitted solutions, and the results must be 
compensated for increasing /?. This is because accuracy is a function of the dimensional node size. 
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In order to obtain better estimates of the critical Rayleigh numbers and to extend the results to 
higher values of 8, a correction function was defined so that 

Ra = Ra, f ( P ;  h), (9) 

where Ra, is the calculated value of a critical Rayleigh number, h is the non-dimensional (y-axis) 
half-node dimension and p is the aspect ratio. The correction functionfwas then approximated by 
the separable product of two functions as 

f ( P ;  h)=g(B)k(h),  (10) 
where k(h)  was approximated by a constant and g(p) was approximated by a piecewise linear 
function. Continuity requirements and test calculations were used in defining g(b) when making 
mesh refinements. A grid size of 6 x 6 was employed for one-vortex and two-vortex solutions; a 
grid size of 12 x 6 was used for three-vortex and four-vortex solutions; and a grid size of 18 x 6 was 
used for five-vortex solutions and greater. A few calculations were also made with a 24 x 6 grid for 
test purposes at high values of 8. Test extrapolation values were calculated on the basis of data 
obtained with grid sizes up to 24 x 24. 

Figure 2 is a plot of the first two critical Rayleigh numbers as a function of aspect ratio for 
p= 1.0-9.0. (Calculations were made starting at p= 1.0 and continuing with A j =  0.1.) Note that 
these two curves define critical values of the aspect ratio (p*)  where the two curves intersect, 
suggesting two competing stable solutions that may be allowed, plus transition values of the 
aspect ratio ( j )  where one solution smoothly converts into a new solution. A third class of relative 
minima, /?,,,-related to the preferred vortex size--can also be defined at the low point of 
each ‘cup’. 

Several characteristics of Figure 2 stand out immediately. The first critical Rayleigh value (Ra*) 
maps out an ‘odd-vortex’ solution set, while the second critical Rayleigh value (Ra**) maps out an 

1708 

Odd-vortex solution 

1000 I I I I I I I 

1.0 2.0 3.0 4.0 5 . 0  6.0 7.0 8.0 9.0 

Aspect Ratio Cp) 
Figure 2. Ra* and Ra** as a function of increasing fi 
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'even-vortex' solution set (i.e. a solution transition is made by adding two vortices at a time). Also 
note that the two curves become increasingly indistinguishable with increasing b and appear to 
move towards the analytic value of Ra* = 1708 derived for the infinite cavity. While unproven, it is 
anticipated that both curves actually converge to Ra* = 1708 as p+co, since the relative influence 
of the sidewalls then becomes negligible. 

The precision of the calculation of the curves presented in Figure 2 varies from at most a tenth of 
one per cent at low j3 to perhaps as much as one per cent for large j?. These imprecisions result from 
two sources: (1) error in the calculation of the 'raw' values of Ra* and Ra** and (2) non-linear 
effects neglected by using a piecewise linear approximation to the correction functionf(b, h). The 
error resulting from the calculation of raw values is small because it is controlled. All calculations 
were made to within at least plus or minus one unit and then rounded to the nearest whole 
number. The error due to the application of the correction function cannot be as tightly controlled 
because of non-linear effects which become more important as the function is extrapolated out to 
high values of p. 

4. CRITICAL ASPECT RATIOS, TRANSITION ASPECT RATIOS AND 
RELATIVE MINIMA 

A critical aspect ratio /?* occurs at a point of intersection of the two curves formed by plotting Ra* 
and Ra** as a function of p. At these points, Ra* = Ra** and two separate stable solutions may 
exist provided Ra > Ra*. The fact that the number of stable solutions has indeed increased has 
been shown dynamically." 

The first eight critical aspect ratios were calculated to the nearest hundredth using interpolation 
techniques. These calculated values are summarized in Table I where they are compared with 
some recent results from Cliffe and Winters. It was originally believed that the dynamic 
characteristics of convection would be a strong function of the angle of intersection formed by the 
two curves at a critical aspect ratio; however, this does not appear to be the case. The overall 
accuracy of the crossover values is of the order of + 3  per cent, and is traceable to the search 
technique employed. 

A transition value of the aspect ratio, fi, occurs when a given solution changes to the next 
solution with increasing p. The transition always occurs on the upper curve with the addition of 
two extra vortices, going from one unstable solution form to a second unstable solution form. 

Table I. Calculated values of the first eight critical aspect ratios, where Ra* and Ra** cross 

Identified Critical aspect ratio @* RaC 
Number of 

vortices 

Present work Ref. 16 

1.59 1.629 
2.74 2.684 
3.56 3.7 15 
4.5 1 
5.47 
6.50 
7.3 1 
8.50 

Present 

2485 
1940 
1843 
1808 
1803 
1799 
1788 
1761 

Ref. 16 

2416 1 or 2 
1978 2 or 3 
1855 3 or 4 

4 or 5 
5 or 6 
6 or 7 
7 or 8 
8 or 9 

Note: Ra'= Rae = Ra**. 
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Rae2 remarked that he expected transitions to occur as /I was increased as the result of 
intersections with the curves of higher-order solutions (e.g. Ra3* and Ra4*). Azmy and Dorning' 
were unable to confirm or deny this expectation. The present work and a related examination of 
the critical Ra3* behaviour" do not support these early expectations. Cliffe and Winters14 have 
conducted further investigations of the even and odd modes, concluding that the no-slip boundary 
conditions give rise to this behaviour. 

In the studies of Azmy and Dorning? transition values appear as relative maxima in the upper 
curve. However, the accuracy of their calculations dropped off rapidly with increasing /I, giving 
increasing underestimation of the critical values, and solutions were increasingly difficult to 
resolve as the width of a vortex approached the width of a node. Our results for transition aspect 
ratios /I are summarized in Table 11. 

As Figure 2 shows, the use of finer calculational grids and corrections for imprecisions resulting 
from the node size and the aspect ratio does not change the relative position of the transition 
values (i.e. they remain relative maxima). Transition values near jl= 1.9 (one-vortex to three- 
vortex solutions) and near = 2.9 (two-vortex to four-vortex solutions) were investigated in 
greater detail using 12 x 6 grid. Holding Ra constant at approximately its critical value, the 
transition value should be observable through several indicators (such as velocity norms and 
number of iterations). This phenomenon is illustrated in Figure 3 where the dashed line is a 
constant-Ra line approximately tangent to the Ra** curve at its relative maxima. The velocity 

Table 11. Calculated values of the first seven 
transition aspect ratios where two vortices 
are added to the unstable equilibrium 

solution 

Identified B Rat 

1 1.87 2676 
2 2.875 1982 
3 3.82 1857 
4 4.95 1830 
5 5.90 1822 
6 6.86 1809 
7 7.82 1788 

Note: Ra'=Ra* or Ra**. 

I I I 217 A s p e c t  R a t i o  ( 8 )  3.1 

D e t a i l  

Figure 3. The velocity norm as an indicator of the transition aspect ratio 
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norms associated with the various solutions are plotted directly above-this curve assumes a near- 
zero minimum at the same location. 

The initial condition for all calculations was a high-velocity, two-vortex solution. With this 
initial condition, the transition was examined in detail as shown in Figure 4. A peak in the number 
of iterations required to achieve convergence occurs at the value p = 2.875. Normally four to eight 
iterations are required for convergence. This requirement grows very rapidly starting around 
/?= 2.85 and peaks at p= 2.875. Surprisingly, the iteration requirements for convergence dimin- 
ished almost as rapidly as they increased for further increases in p, even though the same two- 
vortex initial condition was used to obtain very clear four-vortex solutions. A similar peak in the 
number of iterations occurs using a four-vortex initial condition; however, this was not examined 
in as great detail. Note that transitions occur by growing two additional vortices-one at either 
side. 

The increase in the number of iterations going from two-vortex solutions to four-vortex 
solutions was anticipated and was expected to be a reasonable indicator of when transition 
occurred. However, the occurrence of a peak rather than a threshold change was a surprise. The 
explanation for the peak is believed to lie in the working out of the large velocity differences 
between the very narrow vortices at the sides in close proximity to the strong central vortices. This 
is true with nodal integral methods whether the grid is sufficiently fine to actually represent these 
edge vortices with a plot or not. 

The lower lobes in Figure 2 pass through relative minima with each successive solution. These 
relative minima are associated with the ‘preferred size’ for the particular number of vortices 
forming the solution, and reflect the preferred size for a single vortex at any given aspect ratio. This 

no1 visable 

Vorlea 
forming 
a t  side 

. .  I 
1 I 

p.2.90 

I I 
Q 2.95 

Narrow 
vortices 
at  s i d e s  

r j  stdewal ls  :rdmtiar j 
8 . 2 8 7 5  p . 3 2 0  

(ADprOXimate Transition Point1 

Figure 4. Flowfield development from two vortices to four vortices 
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Table 111. Three sample calculations of the 
local aspect ratio 

1.30 1 1.30 
2.32 2 1.16 
3.35 3 1.1 1 

Note: b,=bmin/N, where N is the number of 
vortices. 

size can be defined by a local aspect ratio 

P I  = P m i n I N ,  (1 1) 
where N is the number of vortices in the solution. The analytic value of PI for the infinitely wide 
cavity is PI= 1-02.’ 

Rae notes that the separation between minima is nearly constant at approximately 1.02 and 
concludes that PI = 1.02 at the limit; however, this result appears to be based on only two 
separations (i.e. the first three minima). The first three minima of Figure 2 are also separated by 
approximately 1.02, but the separation appears to become more variable as /3 increases; however, 
part of this variation could result from imprecisions built into the curve with increasing P. 

To improve on this result, f3, was calculated using relatively fine meshes ( e g  12 x 6 and 18 x 6 
with one, two and three vortices). The process used was simply to calculate the critical Rayleigh 
number, varying P until the minimum was found. It was anticipated that PI would converge 
towards 1.02 with increasing P. The results of these calculations are summarized in Table 111 for 
the first three minima. There is a downward trend towards 1.02, but unfortunately, the process 
could not be carried far enough to demonstrate convergence. 

5. THE THIRD AND FOURTH CRITICAL RAYLEIGH NUMBERS 

Only a few higher critical Ra have been reported in the literature. Most of the analysis has been 
directed at the first critical Ra* and, to a lesser extent, the second critical Ra**. However, an 
infinite number of bifurcation points are assumed to exist for the square ~ a v i t y , ~  and estimates of 
Ra3* (three adjacent vortices) and Ra4* (four vortices arranged two-over-two) have been made. 
Jackson and Winters3 obtained Ra3* = 16 139 using a 5 x 5 mesh and Ra3* = 21 406 using a 9 x 9 
mesh with a quadratic finite element methodology; Azmy and Doming4 obtained Ra3* = 22 200 
using a 6 x 6 grid with a nodal integral method. These same investigators obtained Ra4* =41223 
(5 x 5 mesh),3 Ra4* = 25 032 (9 x 9 mesh)3 and Ra4* = 23 000 (6 x 6 mesh).4 The nodal integral 
results of Azmy and Doming are in fair agreement with the 9 x 9 results of Jackson and Winters, 
but all calculations suffer from the large number of vortices being represented by a very coarse 
mesh. 

In order to refine the calculation of Ra3* for P= 1, calculations were made using a 12 x 6 grid 
and a 16 x 8 grid (two and four times as many nodes as the grid of Azmy and Doming). The SNIM 
obtained Ra3* = 19 906 using the 12 x 6 grid and Ra3* = 19 734 using the 16 x 8 grid. Doubling the 
number of grid points (along the x-axis) resulted in a better than 10% change from the Azmy and 
Doming result of Ra3* = 22 200 using a 6 x 6 mesh, and doubling the number of nodes again 
resulted in less than a 1% change. Furthermore, a complete mapping of Ra3* between fi  = 1 and 
p = 3 has recently been completed. l 7  
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Figure 5. The four-vortex solution for a 9 x 9 grid with D= 1 

The fourth critical Ra4* introduces four-vortex solutions into the square cavity. As shown in 
Figure 5 for the 9 x 9 grid (note that nodal integral methods also accurately represent even-type 
solutions using odd grids), the SNIM obtained Ra4* = 22 586, which differs by less than 2% from 
the result of Azmy and D ~ r n i n g . ~  This would almost seem to be in contradiction to the previous 
result for Ra3* but it is not. The explanation lies in the symmetry of the four-vortex solution, 
which means that it is well modelled by the 6 x 6 grid. Increasing the mesh size improved the detail 
but did not significantly improve the solution. 

6. CONCLUSIONS 

The TDNIM and SNIM have been applied to the study of bifurcation phenomena in an untilted 
enclosed cavity for aspect ratios between one and nine. Three parameters associated with the 
aspect ratio @*, 6 and Bmin) were defined and evaluated. The supposition that transition values 6 
appear as relative maxima was confirmed within the accuracy of the methodology; the TDNIM 
was used in conjunction with the SNIM to evaluate Ra3* and Ra4*. The new value of 
Ra3* = 19 734 was obtained as a significant improvement over the previously estimated value; 
however, the new value of Ra4* = 22 586 only confirmed previous coarse mesh results obtained 
with nodal integral methods. Finally, completing the Ra* and Ra** curves through /3= 9-0 at high 
accuracy demonstrates that the critical Ra values for the finite cavity converge towards the 
analytic value of Ra= 1708, at least to a first approximation. 
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